
W
H

IT
E

 P
A

P
E

R

Managing the Life Cycle of a Suite/
Advanced UI Installat ion
By John Cresswell, Senior Software Engineer; Josh Stechnij, Senior Software Engineer; and
Michael Urman, Manager, Software Development Engineering, Flexera Software

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

2

Managing the Life Cycle of a Suite/
Advanced UI Installat ion
The Suite/Advanced UI project type is available in
the Premier edit ion of InstallShield; this type of project
includes support for packaging together mult iple separate
installat ions as a single installat ion while providing a
unified user interface. Note that the Advanced UI project
type is available in the Professional edit ion of InstallShield;
it has support for including only one main installat ion;
that is, it does not have support for packaging mult iple
separate installat ions.

To ease readability, the following white paper uses the term
Suite project to refer to a Suite/Advanced UI project.

Introduct ion
The life cycle of a single package—perhaps a Windows
Installer package or an InstallScript installat ion—consists of
well-understood phases: first-t ime installat ion of a product,
maintenance of the product, upgrades to the product,
and product removal. In scenarios in which one package
replaces another package, the level of complexity increases.
A Suite installat ion further increases this complexity, since
each package in the Suite may reach various phases at
different stages during the life of the Suite. For example,
a new version of a Suite installat ion may introduce a new
package, upgrade a second package, and remove a third;
it may also replace two packages with a new updated
version. And on some target systems, all of those packages
may behave as a first-t ime installat ion. Although the level
of complexity increases with some of these Suite scenarios,
the flexibility that is available makes the Suite project type
a powerful choice for addressing various scenarios of
modern installat ions. Accounting for each of the supported
scenarios requires careful planning.

This white paper presents background information that
explains how the Suite engine determines the state of each
target system as well as the phase that should be used to
run a Suite installat ion. This white paper also highlights how
to plan and manage a Suite installat ion that successfully
addresses each required phase in its life cycle.

How the Suite Engine Determines the State of a Suite
Installat ion on a Target System
At run t ime, the Suite engine needs to determine which state
it should use to run the Suite installat ion:
 • First-t ime installat ion, which is typically used when the

product is not present on the target system
 • Maintenance or removal, which is typically used when

a part icular product version is already present on the
target system

 • Upgrade, which is typically used when an earlier
version of a related product is present on the
target system

The following factors help determine which state is used:
 • Whether the Suite is registered on the target system
 • Package type (primary vs. dependency)
 • Mode condit ion

The following sect ions explain these factors in more detail.

Suite Registrat ion
Suite projects let you specify whether you want your
Suite installat ion to be registered on target systems; the
registrat ion is essent ial to ensuring that the Suite runs in the
correct mode at run t ime. Registrat ion involves creat ing the
necessary registry data on the target system to add an entry

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

3

for the Suite in Add or Remove Programs. This entry lets
end users perform maintenance for your Suite installat ion,
modifying or removing if needed. The General Information
view in a Suite project has a Show Add or Remove
Programs Entry sett ing that lets you indicate the appropriate
behavior, thereby indicat ing whether the Suite is registered
on target systems. Note that to manage the life cycle of a
Suite and support any of the life cycle scenarios that are
described in this white paper, Yes must be selected in the
Show Add or Remove Programs Entry sett ing.

Figure 1: To manage a life cycle of a Suite, Yes must be selected in
the Show Add or Remove Programs Entry sett ing in all versions of
the Suite.

Package Type
Each package in a Suite project needs to be ident ified
as either a primary package or a dependency package.
The package type ident ifies whether the presence of that
package on a target system should influence whether the
Suite installat ion runs in first-t ime installat ion mode or
maintenance mode:
 • Primary package—A primary package is a main part

of the Advanced UI or Suite/Advanced UI installat ion.

At run t ime, if all of the primary packages in the
installat ion are absent from the target system, the
installat ion may run as a first-t ime installat ion. If any of
the primary packages are present on the target system,
the installat ion may run in maintenance mode.

 • Dependency package—The presence or absence of a
dependency package on the target system does not
influence which mode is used to run the installat ion.

An example of a package that is typically flagged
as a dependency package rather than as a primary
package is the .NET Framework installat ion. The .NET
Framework may need to be present on target systems in
order for your product to funct ion correct ly; however,
its presence should not be used to determine whether
the Suite is already installed on a given target system.
Otherwise, if your product has never been installed
on a target system but the .NET Framework is
present, your Suite installat ion would never run as a
first-t ime installat ion.

The Package Type sett ing that is available when you select
a package in the Packages view indicates whether the
package is a primary package or a dependency package.
You can change the value of this sett ing as needed for any
packages in your project.

Figure 2: The Package Type sett ing in the Packages view lets you
specify whether a package is a primary package or a dependency
package. Only primary packages influence whether the Suite behaves
as a first-t ime installat ion or runs in maintenance mode.

Mode Condit ions
At run t ime, a Suite installat ion runs in one of the
following modes:
 • Install mode, in which the installat ion behaves as a

first-t ime installat ion
 • Maintenance mode, in which the installat ion enables

end users to change which features are installed,
remove the product or features, and (if supported)
repair the product.

InstallShield creates install and maintenance mode
condit ions in Suite projects automatically. The mode
condit ions are not available for edit within InstallShield;
they are visible only when the project file (.issuite) is viewed
in a text editor. The mode condit ion that InstallShield builds
into the release is visible in the Setup.xml file in the Suite
release’s Interm folder. These mode condit ions determine
whether a Suite installat ion runs in first-t ime installat ion
mode or in maintenance mode.

Figure 3: Example of a placeholder mode condit ion in an .issuite
project file

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

4

The install mode condit ion is based on the following factors:

 • Detect ion condit ions—Part of the install mode condit ion
consists of the detect ion condit ions of all of the primary
packages in the Suite project. If none of the primary
packages’ detect ion condit ions evaluate as true
(that is, if none of the primary packages are already
installed), the detect ion condit ion part of the install
mode condit ion is true. If one or more of the primary
packages’ detect ion condit ions evaluate as true (that
is, at least one of the primary packages is already
installed), the detect ion condit ion part of the install
mode condit ion is false.

 • Suite Installed condit ion—The other part of the install
mode condit ion consists of a Suite Installed condit ion,
which may trigger the installat ion to run in first-t ime
installat ion mode if the same version of the Suite
installat ion is absent from the target system. The Suite
Installed part of the install mode condit ion compares
the Suite GUID and the version of the Suite installat ion
with, if applicable, those of the Suite installat ion that
is installed on the target system. If these values are
different, the Suite Installed part of the install mode
condit ion suggests that the Suite installat ion is absent,
so a first-t ime installat ion may result. For more details
about the Suite Installed type of condit ion check, see
“Detect ing Whether a Specific Version of an Advanced
UI or Suite/Advanced UI Installat ion Is Already
Installed” in the InstallShield Help Library.

Note that the Suite engine’s use of the version number
to different iate between different product versions is
similar to that of the Windows Installer engine and
the InstallScript engine. Like the Windows Installer
and InstallScript engines, the Suite engine uses only
the first three fields of the Suite version to dist inguish
between different product versions; it ignores the fourth
field. Thus, the Suite engine sees version 1.0.0.0 and
1.0.0.1 as the same version, but 1.0.0.0 and 1.0.1.0
as different versions.

If all of the primary packages’ detect ion condit ions evaluate
as false, or if the Suite Installed condit ion indicates that
the Suite installat ion is not already installed, the install
mode condit ion is true, and the installat ion runs as a
first-t ime installat ion.

The maintenance mode condit ion is based on the
detect ion condit ions of all of the primary packages in
the Suite project. If any of the primary packages’
detect ion condit ions evaluate as true (that is, if one or
more of the primary packages are already installed), the
mode condit ion is true, and the installat ion runs in
maintenance mode.

Configuring Products to Install Side by Side with
Each Other
One possible scenario for product installat ions allows for
every release of a product to be installed side by side with
exist ing or future versions, instead of updating or replacing

exist ing versions of a product with each new release.
The side-by-side scenario is similar to what is provided by
products such as Microsoft Visual Studio or InstallShield.
End users can typically install each version of these products
with earlier or later versions of the product on a given target
machine. Suite installat ions, .msi packages, and InstallScript
installat ions all support this type of product installat ion
scenario.

For an .msi package to support such a side-by-side scenario,
the product code, package code, and product version at
a minimum should be changed. InstallScript installat ions
require changing the product code and the product version.
Making these changes allows for such packages to be able
to install with exist ing versions on the machine without
replacing or upgrading them.

One addit ional change to consider making in the case of
side-by-side .msi or InstallScript installat ions is the target
install locat ion. Since changing the product codes of these
types of installat ions allows them to be installed with
exist ing versions, it is always best to ensure that the files
installed by such packages do not overlap and cause shared
reference count issues such as files left on the machine after
products are uninstalled.

The requirements for allowing a product installed by a Suite
installat ion to be able to install side by side with other
versions includes the following:
 1. Change the product codes, product versions, and (for

.msi packages), package codes as relevant in each
primary package that is in the Suite project.

 2. Change the target installat ion locations of each
primary package

 3. Build new versions of the primary packages to
incorporate the changes to product code, product
version, package code, and target installat ion location,
and include these new versions of the packages in the
Suite project.

 4. Change the Suite GUID and version of the Suite
project. These are configurable in the General
Information view. This triggers the installat ion to run as
a first-t ime installat ion on target systems on which an
earlier version of the Suite is already present, thereby
allowing side-by-side instances of different versions of
the product.

 5. Build a release of the new version of the
Suite installat ion.

Requirements 1, 2 and 3 allow the packages of the Suite
to install side by side with other versions of the packages;
requirements 4 and 5 allow the Suite itself to install side by
side with other versions of the Suite.

Note that changing the Suite GUID and version is typically
not sufficient to permit Suite installat ions and the packages
that they include to install side by side. If the primary
packages in the Suite are more or less the same (same
product codes, package code, versions, etc.), the install
mode condit ion st ill evaluates to true, allowing the Suite to

http://helpnet.flexerasoftware.com/installshield19helplib/Default.htm#StartTopic=helplibrary/SteConditionSteInst.htm

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

5

run as a first-t ime installat ion. However, the Suite engine
does not install a primary package that shares product
codes with exist ing versions since the Suite detects them
as already installed on the target system. Worse st ill, in
the event that either Suite that installed these packages is
removed from a machine, the remaining Suite installat ion
will be broken because its primary packages were removed
by the unrelated Suite.

While primary packages are the main focus for installat ion
in a Suite installat ion, dependency packages st ill merit
some discussion. Since these packages do not affect what
mode the Suite runs in (by default), and since they are often
shared across unrelated products, these typically do not
need to be changed in side-by-side installat ion scenarios.
For example, Product A version 1.00 and Product A version
2.00 that can be installed together side by side may both
depend on the Microsoft Visual C++ 10.0 runt ime. Since
this dependency is required by both products but only
needs to be installed once, no changes to the Suite or the
VC++ runt ime package need to be made. Once either
version of Product A is installed on a target machine, the
VC++ 10.0 runt ime will be installed if it is not already
installed. Subsequent ly installing the other version of
Product A skips the installat ion of the VC++ dependency
since it is already present. Uninstalling either product leaves
the dependency on the machine, allowing the remaining
product installat ions to cont inue to funct ion correct ly.
(Dependency packages generally do not have a remove
operat ion enabled.)

Managing Upgrades through Suites
The first t ime your Suite is run on a machine things are
simple: the machine has never seen any of your packages
or your Suite, and install operat ions are run as expected.
However, consider a scenario in which you have a Suite of
packages—some of which are already installed on a given
machine, and some are not. You have upgrades to roll out.
You may have added packages, removed packages, or
merged them. The following sect ions explore these types of
typical upgrade scenarios and provide guidance on how
to configure a Suite project and its packages to create a
successful installat ion.

Configuring Upgrades that Replace Earlier Versions
If Present
In many cases, the number of packages in the Suite project
does not change from one version to the next. The goal
of a new version of the Suite installat ion is to upgrade
the applicat ion on the machine. Different versions of the
applicat ion cannot coexist with each other, so the upgrade
must in some way replace the files on the system. The
AdminStudio installat ions typically fall into this category,
since only one version of AdminStudio can be installed on
a machine at a given t ime, and it is rare that the list of
packages within the installat ion changes.

For example, when Suite 1.0 was released, it contained
primary packages Pack A 1.0 and Pack B 1.0. Suite 2.0
needs to completely replace version 1.0 if it is present,

leaving just 2.0 registered on the machine. As with all
upgrade scenarios, the individual packages need to
be configured to ensure they successfully replace their
counterparts already registered on the machine. Equally
important to success is the Suite running in the correct mode
condit ion so that appropriate package operat ions are run.

In order for the individual packages to complete the
upgrade, the Suite needs to run as a first-t ime installat ion.
Incrementing the Suite version ensures that the Suite is not
detected as already being registered. Then as long as the
new packages are not already installed, as determined
by their detect ion condit ions, the Suite runs as a first-t ime
installat ion. The general strategy is independent of the
package type; however, there are slight differences in how
things should be configured.

If all the packages in Suite 1.0 and Suite 2.0 are .msi
packages, there are a number of ways of upgrading the
packages. To perform a major upgrade, Pack A 2.0 and
Pack B 2.0 need to have entries in the Upgrade table to
enable the original packages to be removed before the
version 2.0 files are installed. Since the product code and
package code are being changed between versions in
this scenario, no other changes need to be made to the
Suite project. For minor upgrades, you can use the Minor
Upgrade Handling sett ing in the Packages view of the Suite
project to manage the installat ion. If you select Automatic
in this sett ing for the .msi packages, at run t ime if an .msi
package with the same product code is detected on the
machine, the correct opt ions are passed to the Windows
Installer engine to allow the minor upgrade to succeed.

For InstallScript packages the new installat ion is responsible
for performing the upgrade of the exist ing package.
Whether you are using the built-in InstallScript engine
support to perform the upgrade or you are script ing the
uninstallat ion yourself, the configurat ion from a Suite project
perspect ive is the same. Since the version number in the
new InstallScript project is higher than that already on the
target machine, the Suite engine’s built-in support allows the
upgrade to take place. The built-in detect ion condit ions that
are generated for the InstallScript project use the version.
Since this condit ion becomes part of the mode condit ion,
no extra configurat ion is required in the Suite project.

For other installat ion technologies, it is likely that .exe
packages are being used. The Suite engine in general does
not know how to determine if an executable file is installed
on a machine. So once version 2.0 of the executable file
has been created and configured to perform the upgrade
from 1.0 to 2.0, you need to manually create the new
package’s detect ion condit ion in the Suite project. The new
executable file must not be detected on the target machine;
otherwise, the install operat ion is not passed to the
command line at run t ime. For addit ional details, consult the
documentat ion of the installat ion technology that you are
using to create the executable package.

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

6

Note that if the end user chose to install only some of the
features in the base Suite, the feature select ions are not
preserved automatically when the Suite upgrade is run. To
learn how to add this support, see “Preserving End Users’
Feature Select ions from One Version of a Suite to the Next
Version” on page 8.

Adding a New Package to a Suite
Another scenario to consider for Suite installat ions is one in
which new packages are added to a new version of a Suite.
These could either add new funct ionality delivered through
new .msi or InstallScript packages, or update an exist ing
package, such as through a Windows Installer patch (MSP).
While the overall changes that are required to support this
scenario are similar in each case, this sect ion considers
each of these separately.

Updating Exist ing Funct ionality Through New
Packages (Patching)
In some cases, you may want to update an exist ing Suite
installat ion, or, more specifically, some packages in the
Suite installat ion through patches. For .msi packages,
you can accomplish this through .msp packages that
are patches for the exist ing .msi packages. Taking this
approach lets you create a Suite installat ion that installs
the very latest version of a product on a machine with or
without an earlier version of the product. You can create
a new version of the Suite installat ion that includes a new
patch that updates a base .msi package in the installat ion.
If the patch is authored correct ly—either through the use of
cumulat ive minor upgrades, or through using the Windows
Installer MinorUpdateTargetRTM patch property—the patch
contained in the Suite can constant ly be replaced with a
new patch.

As an example, consider a scenario where a Suite
installat ion contains a number of .msi packages that
comprise the main funct ionality of an ant ivirus product
(though this scenario is unlikely due to self-updating
behavior of such products). One of the .msi packages in this
Suite contains the main ant ivirus engine and virus definit ion
files. As part of the product lifet ime, the engine is updated
on regular intervals along with the virus definit ion files. The
first release of this product is installed by a Suite installat ion.
The updates to the engine and virus definit ions are defined
through patches (.msp files) to the main .msi package.
Once the init ial Suite is released, updates can be included
in an updated Suite installat ion that contains an addit ional
package for the .msp file.

In order to build an update to a Suite that implements
this type of scenario, add the .msp package through the
Packages view in the exist ing Suite project. The package
can be configured as necessary, though no special
changes should be needed once the .msp file is added. In
addit ion to adding the package, create a new feature in
the Suite project, and configure it to be not visible (thereby
prevent ing an end user from deselect ing the feature at run
t ime). Then associate the patch package with the new

hidden feature. This then ensures that the patch package is
installed during any first-t ime installat ion operat ion of
the Suite.

The Suite version in the General Information view should
also be changed. Changing the suite version but keeping
the Suite GUID the same allows an exist ing instance of the
Suite on target systems to be upgraded. At run t ime, the
install mode condit ion evaluates to true because of the Suite
version change. The Suite engine then runs as a first-t ime
installat ion. Since the original packages that were in the
earlier version of the Suite may already be installed, the
installat ion of these is skipped during the Suite upgrade.
The new patch package is applied to the target system since
the feature it is associated with is selected to install
by default.

One issue to be aware of with this approach relates to the
features in the Suite. In the earlier version of the Suite, an
end user may have selected or deselected certain features if
the Suite was authored to allow this. However, during the
upgrade, the original feature select ions are not available,
since the Suite engine does not persistent ly track feature
states across installat ion sessions. For information on how
to add this support, see “Preserving End Users’ Feature
Select ions from One Version of a Suite to the Next Version”
on page 8.

Adding New Funct ionality through New Packages
Another scenario that you may encounter involves adding
new packages in a Suite to provide addit ional funct ionality
to a product (as opposed to just updating the exist ing
packages contained in a Suite). While this may not be as
likely to occur, it is st ill possible to deliver such changes
through a Suite installat ion.

By way of example, consider a product to which you may
eventually add a new subproduct at some t ime after its
init ial release. In an Office-like product, this could involve
adding a spreadsheet applicat ion into the product after
already shipping it with a word processor. Creating a new
.msi package to install the spreadsheet applicat ion may
be easier than adding the funct ionality to the exist ing
package, and it averts some issues with .msi packages.
Separat ing it into another .msi package also allows for
easier maintenance of installing and uninstalling this
part icular part of the product independent of the rest of
the product.

Two different approaches are available for this scenario
when you add the new .msi package as a new package in
the Suite project:
 • Change the Suite version to ensure that the Suite runs

as a first-t ime installat ion on machines that have the
exist ing Suite installed.

 • Leave the Suite version the same, which causes the
Suite to run in maintenance mode if it was already
installed on a target machine.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa370344%28v%3Dvs.85%29.aspx

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

7

Both of these approaches are valid, and choosing which to
use depends on the requirements for the installat ion.

If you change the Suite version and add a new .msi
package to the project, consider associat ing the package
with a new feature to allow end users to separately select
and install this package independent of other parts of the
Suite. This approach enables end users to install the Suite
as would normally be expected for a first-t ime installat ion
on machines that do not have any exist ing version installed.
On machines that do have an exist ing version installed,
changing the Suite version allows for running the Suite
as a first-t ime installat ion again. Since a Suite in this
scenario has been updated from an earlier version, this is
a recommended way of delivering an update that includes
new packages to provide new product funct ionality.
Behaving as a first-t ime installat ion gives end users the
expectat ion that the product is different from the exist ing
version they had installed. One caveat to this approach is
that the exist ing Suite’s feature states are not maintained
in the updated Suite session. However, it is possible to
preserve the exist ing feature states into the updated Suite
session. For more information, see “Preserving End Users’
Feature Select ions from One Version of a Suite to the Next
Version” on page 8.

If you do not change the Suite version, the only required
significant change to the Suite project would be adding
the new .msi package and a new feature that is associated
with that package. Although a new feature this is not
strict ly necessary, it provides for a Suite that has a reduced
degree of complexity. Running this Suite on a machine
that does not have an earlier version results in first-t ime-
installat ion behavior. Running this Suite on a machine that
has an earlier version results in the updated Suite running in
maintenance mode. The new package can be installed by
select ing its feature from the maintenance select ion wizard
page. The downside to this approach is that it is unclear
that this Suite has been updated, and end users may not
not ice the new feature. In addit ion, changes to exist ing
packages (through something like Windows Installer minor
upgrade packages) should not be included. The upgrades
will run, but this experience would be unexpected for an
end user installing this Suite, since it looks like it would run
only normal maintenance operat ions.

Removing a Package from a Suite
Consider the situat ion where you need to remove a
package for a new release of your software. Perhaps you
are deprecating a tool or you have merged one tool into
another and removed one of the packages. As with most
other upgrade scenarios, the Suite should be configured to
run as a first-t ime installat ion if an earlier version is present,
so the Suite version needs to be updated.

If the packages are not configured carefully, the package
that is being removed can be orphaned on the machine.
This means that the package is st ill installed—the contents

of the package are st ill present, but the Suite that is
registered contains no information about this package. This
results in the package being permanent ly installed without
some manual intervent ion from an end user.

Simply removing the unwanted package from the new
Suite results in the package being orphaned at run t ime.
The install operat ions of the remaining packages are the
only commands that are run; in general, these commands
do not remove another installat ion from the machine. The
Suite needs to contain information on how and when to
remove the package that is no longer required. How this is
accomplished is dependent on the contents of the Suite and
the type of package being removed.

If the package being removed is an .msi package, there
are other .msi packages in the Suite, and a major upgrade
can be performed for one or more of the .msi packages,
the situat ion is simplified somewhat. In that case you can
configure one of the other .msi packages in the Suite to
remove the unneeded package through an entry in the
Upgrade table and the RemoveExist ingProducts act ion.

For all other situat ions further configurat ion is required to
remove the package. In one approach, you can add to the
Suite a new package that is responsible for removing the
old package. To configure the removal, use the command
line and silent command line sett ings under the Install
sett ing of the Operat ions area in the Packages view, and
enter command-line statements that uninstall the payload
of the old package. This “remove” package is a pseudo
package, since it does not contain any payload and it does
not install anything on target machines.

Examples of more complicated cases are when the other
packages in the Suite are Windows Installer minor upgrade
packages or the package being removed is not an .msi
package. In these cases you need a method that would
remove the old package when a Suite that does not contain
the package runs as a first-t ime installat ion. The solut ion
here is to configure the new Suite to contain a package—
most likely an .exe package—that as part of its install
operat ion performs the uninstallat ion of the unwanted
package. That is, in the Packages view of the Suite
project, add a new .exe package that does not contain
any payload. Use the command line and silent command
line sett ings under the Install sett ing of the Operat ions
area to specify command-line statements that uninstall
the unwanted package. For an .msi package, you would
want the package to use the /x uninstallat ion command-
line parameter and probably the /qn silent parameter (for
example, msiexec /x {product code of unwanted .msi} /
qn). For InstallScript, you would pass the /uninst parameter.
For other installat ion technologies, you would run the
appropriate commands required to remove the package.
All of these commands should be placed in the “remove”
package’s install operat ion command line; the install
operat ion is the only one that needs to be supported.

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

8

Figure 4: Command-line sett ings for a “remove” package that
removes an .msi package

Figure 5: Command-line sett ings for a “remove” package that
removes an InstallScript package:
“[ProgramFilesFolder]InstallShield Installat ion Information\{PRODUCT-
GUID-HERE}\Setup.exe” /uninst

The detect ion condit ion for the remove package needs to be
configured so that the package runs only at the appropriate
t ime—when the old package is detected on the machine. To
do this, you can simply use the detect ion condit ion from the
earlier Suite’s install operat ion and negate it. The remove
package then runs only if the package is already on the
machine. The Suite engine has built-in InstallScript Package
and MSI Package condit ion types for detect ing InstallScript
and .msi packages. Using these condit ions within a None
condit ion group ensures that the remove package is run
only on machines on which the old package is present.

Note that if the package that you want to remove is an
.msp patch, Windows Installer removes it when it removes
the base .msi package, or when a different .msp file
supersedes it. Therefore, it cannot be orphaned at the .msp
level; only by orphaning the base .msi package will you
orphan the .msp file.

For package technologies that the Suite engine cannot
automatically detect, simply use the same condit ion that
was used in the previous package’s detect ion condit ion,
but within a None condit ion group. All remove packages
should be marked as dependency in the Package Type

sett ing to prevent their detect condit ion being used in the
mode condit ion of the new Suite.

Addit ional considerat ions may be required for the
condit ioning of a remove package. For example, you
may need to use an eligibility condit ion to prevent the
package from being considered for installat ion. This may
be especially true if the feature tree of the Suite is large and
complex. Use the aforementioned details as a baseline for
implementing such package removals.

Preserving End Users’ Feature Select ions from One Version
of a Suite to the Next Version
When installat ion authors upgrade a complex installat ion
that offers several opt ions, it is common to try to respect
the choices that the end user made when first installing
the product. Windows Installer offers this across major
upgrades by means of the MigrateFeatureStates act ion.
But for MigrateFeatureStates to work correct ly, several
precondit ions must be met. In part icular, the feature tree
must not have changed great ly from that in the preceding
package. Suite installat ions have more flexibility in offering
the same upgrade experience, in that the layout of the
feature tree need not be unchanged; however, there is no
MigrateFeatureStates act ion to do the work. Instead, the
installat ion author must configure condit ions within the
Suite to provide a smooth upgrade. The idea is simple,
but the implementat ion can be intricate. Configuring this
correct ly can significant ly enhance the end user’s overall
appreciat ion for your product’s installat ion.

Here’s how to approach end users’ feature select ions.
Out of the box, an installat ion of a Suite typically installs
all features. However, a condit ion on each feature can
override this. For each feature whose state should be copied
from an earlier version, specify a condit ion that is true if
its predecessor is on the machine. Typically this will look
somewhat like the detect ion condit ion of a package that
was associated with this feature in an earlier release. To
handle a new feature, or cases when the earlier version
of the Suite is not installed, consider also whether the
feature should be enabled in a first-t ime installat ion. The
following table shows four common scenarios in which a
feature is associated with a single .msi package, as well as
condit ional statements that support each of those scenarios.

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

9

Table 1: Condit ions for Preserving End Users’ Feature Select ions

Consider the MSI Upgrade detect ion cases represented
by the feature condit ions of the above table carefully. The
footprint provided by an earlier version of the package may
not match the footprint of the current version, and the end
user may have skipped one or more intermediate versions
of your product. No matter how the end user got to the
current version of your product, the installat ion should
choose reasonable features to install, and choosing the
correct condit ion—or condit ions—is central to ensuring that
this happens.

Summary
This white paper provides insight on how the Suite engine
chooses between a first-t ime installat ion experience and
a maintenance experience in different run-t ime scenarios.
It also explains how to manage Suite installat ions at
different phases during their life cycles. The following table
summarizes the various approaches for addressing different
run-t ime scenarios.

Scenario Sample Operators and Condit ion
Checks for Feature Condit ions
in the Features View of the Suite
Project

A new feature, enabled by
default

A new feature, disabled by
default

An upgrading feature,
enabled by default for
first-t ime installat ions

An upgrading feature,
disabled by default for
first-t ime installat ions

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

10

Scenario Required Changes for a Primary Package
in the Suite

Required Changes to the Suite Project

Side by side

(The new version of the product can be installed
on a machine that has the earlier version.)

1. Change the product code.
2. Change the product version.
3. Change the package code (for an .msi
 package).
4. Change the target installat ion locat ion.
5. Build the new version of the package.

1. Change the Suite GUID.
2. Change the Suite version.
3. Include the new version of the package in
 the project.
4. Build a release of the new version.

Old version replacement

(Replace an old version with a new version if
present; otherwise, install the new version.)

For a major upgrade .msi package:
1. Change the product code.
2. Change the product version.
3. Change the package code.
4. Update the files and other data as
 needed.
5. Add entries to the Upgrade table.
6. Build the new version of the package.

For a minor upgrade .msi package:
1. Change the product version.
2. Change the package code.
3. Update the files and other data as
 needed.
4. Build the new version of the package.

For an InstallScript package:
1. Change the product version.
2. Update the files and other data as

needed.
3. Build the new version of the package.

For other package technologies (.exe
packages, etc.), consult the appropriate
documentat ion for creat ing a new version
that replaces the earlier version.

1. Change the Suite version.
2. Replace the old version of the package in

the project the new version.
3. For .exe packages and packages other

than .msi and InstallScript, update the
detect ion condit ions of the new version of
the package as needed.

4. Build a release of the new version of
the Suite.

Updated funct ionality, new package

(Update funct ionality by introducing a new
package.)

Create an .msp package for the base .msi
package.

1. Change the Suite version.
2. Add the .msp package to the project.
3. Associate the .msp package with a new

hidden feature to ensure that it is applied
during any first-t ime install.

4. Build a release of the new version.

New funct ionality, new package

(Add new funct ionality by introducing a new
package.)

Create and build the new package. For method 1, in which the result ing Suite
behaves as a first-t ime installat ion if an
earlier version of the Suite is already
present:
1. Change the Suite version.
2. Add the new package to the project.
3. Optionally associate the new package

with a new feature.
4. Build a release of the new version.

For method 2, in which the result ing Suite
runs in maintenance mode:
1. Add the new package to the project.
2. Optionally associate the new package

with a new feature.
3. Build a release of the new Suite.

Summary of Suite Life Cycle Changes

Managing t he Life Cycle of a Suite/Advanced UI Installat ion

11

Scenario Required Changes for a Primary Package
in the Suite

Required Changes to the Suite Project

Remove a package The approach varies, depending on what
other kinds of packages are available in
the Suite.

For a major upgrade .msi package:
If the new version of the Suite contains a
major upgrade .msi package, configure
the .msi package (through the Upgrade
table and the RemoveExist ingProducts
act ion) to uninstall the package that
needs to be removed.

For other kinds of packages
(e.g., a minor upgrade .msi package or
an InstallScript package):
Create a “remove” package that does
not install anything but only uninstalls the
package that needs to be removed.

For a major upgrade .msi package:
1. Change the Suite version.
2. Replace the package that is being

upgraded with the major upgrade .msi
package (that uninstalls the package that
needs to be removed).

3. Build a release of the new version.

For other kinds of packages:
1. Change the Suite version.
2. Add the remove package to the Suite

project, and select Dependency for its
Package Type sett ing in the Packages
view.

3. Configure the remove package’s detect ion
condit ion so that it is run only if the
package to be removed is detected on
target systems.

4. Configure the command line and silent
command line sett ings (Packages view
> Operat ions area > Install subarea) to
specify command-line statements that
uninstall the unwanted package.

5. Build a release of the new version.

Preserve end users’ feature select ions from one
version to the next

In the new version of the Suite project,
incorporate feature condit ions that detect
the packages that end users previously
chose whether to install:

• If a package predecessor is installed
because an end user selected its feature
in the earlier Suite version, the feature
condit ion in the new Suite should
evaluate to true to trigger the package’s
feature to be selected again.

• If a package predecessor is not installed
because an end user deselected its
feature in the earlier Suite version,
the feature condit ion in the new Suite
should evaluate to false to prevent the
package’s feature from being selected.

• If a package has no predecessor, the
feature condit ion should reflect whether
the package should be installed by
default.

Summary of Suite Life Cycle Changes

W
H

IT
E

 P
A

P
E

R

Flexera Software LLC
1000 East Woodfield Road,
Suite 400
Schaumburg, IL 60173 USA

Schaumburg
(Global Headquarters):
+1 800-809-5659

United Kingdom (Europe,
Middle East Headquarters):
+44 870-871-1111
+44 870-873-6300

Australia (Asia,
Pacific Headquarters):
+61 3-9895-2000

For more office locat ions visit:
www.flexerasoftware.com

Copyright © 2013 Flexera Software LLC. All other brand and product names ment ioned herein may be the trademarks and registered trademarks of their respect ive owners.
 IS_WP_AdvUILifecycle_Feb13

http://www.flexerasoftware.com

